Evaluation of the LMDZ model in a weather-forecast mode

Journées MISTERRE

Solange Fermepin, Sandrine Bony and Laurent Fairhead

LMD/IPSL

June 2011

Motivation

- 1 To improve our confidence on long-term climate simulations.
- ② To understand the systematic errors in the models' physics.
- The need for model evaluation in configurations where the dynamics is well constrained (e.g., SCM simulations).

- Global short-term integrations (1-5 days).
- GCM initialized from a well defined state (Reanalyses).
- Premise: as long as the dynamical state of the forecast remains close to the real atmospheric state, systematic errors are due to errors in fast physics parametrizations.

2 / 5

Relative Humidity Bias

Vertical Velocity Bias

Precipitation Bias

Perspectives

- Initialize the SCM with ERA Interim Reanalyses in order to estimate the errors in Transpose AMIP simulations due to "imperfect" initialization.
- Use Transpose AMIP to evaluate the influence of clouds parametrization on the errors of large scale dynamics
- Use Transpose AMIP to evaluate the sensibility to resolution of the parametrization of convection
- Aquaplanet experiments

Merci!

