On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates

Jessica Vial · Jean-Louis Dufresne · Sandrine Bony

Journée MissTerre, 19-23 novembre 2012

The abrupt 4xCO2 experiment

Methode

Decomposition of the adjustment to the forcing:

$$\sum_{x} \Delta F_x = \Delta F_{adj} \qquad \Delta F_x = \frac{\partial R}{\partial x} \Delta x = K_x \Delta x$$

Kernel method

~ -

Decomposition of the feedbacks:

$$\lambda = \sum_{x} \lambda_{x} = \lambda_{pk} + \lambda_{lr} + \lambda_{wv} + \lambda_{alb} + \lambda_{cl}$$

$$\Delta R_x = \frac{\partial R}{\partial x} \Delta x = K_x \Delta x$$

$$\lambda_x = \frac{\Delta R_x - \Delta F_x}{\Delta T_s}$$

Decomposition the contribution to temperature increase for a CO2 doubling

0

regions

components

Decomposition the contribution to the *spread* of the temperature increase for a CO2 doubling

Water vapor + lapse rate feedback, in the tropics $\Delta F_x = \frac{\partial R}{\partial x} \Delta x = K_x \Delta x$

WV + LR

Water vapor + lapse rate feedback, in the tropics

Cloud feedback

- ▲ Cloud feedback (including adjustments to CO2)
- $\Delta CRF/\Delta Ts$ (not corrected for cloud-masking effects)

Cloud feedback

Over the tropical oceans,

Compositing into different dynamical regimes

$$\bar{C} = \sum_{\omega} P_{\omega} C_{\omega}$$

$$\bar{\Delta C} = \sum_{\omega} C_{\omega} \Delta P_{\omega} + \sum_{\omega} P_{\omega} \Delta C_{\omega} + \sum_{\omega} \Delta C_{\omega} \Delta P_{\omega}$$

Two classes of models: high senstive and low sentive models

Conclusion

- Total feedback parameter is reduced by about 10% when considering effect of adjusment on the forcing
- The consideration of adjustemnt does not reduce the inetrmodel spread of feedbacks
- Clouds remains the majotr contributor to the spread of climate sensitivity
- The spread of combined water vapour + lapse rate feedback is entirely due to differences in RH changes
- Spread in tropical clouds: mainly in the SW in region of shallow convection

Climate sensitivity for different IPSL-CM models

Flux TOA vs surface temperature for the abrupt 4xCO2 simulations

6.000	1%/year CO ₂ increase				abrupt $4xCO_2$		
model	$\Delta Q_t(2\mathrm{CO}_2)$	λ	$TCR(2CO_2)$	$\Delta T_s^e(2\mathrm{CO}_2)$	$\Delta Q_t(2\mathrm{CO}_2)$	λ	$\Delta T_s^e(2\mathrm{CO}_2)$
	(Wm^{-2})	$(\mathrm{Wm}^{-2}\mathrm{K}^{-1})$	(K)	(K)	(Wm^{-2})	$(Wm^{-2}K^{-1})$	(K)
IPSL-CM4	3.5	-0.92	2.13	3.79			
IPSL-CM5A-LR	3.5	-0.98	2.09	3.59	3.12	-0.76	4.10
IPSL-CM5A-MR	3.5	-1.01	2.05	3.47	3.29	-0.80	4.12
IPSL-CM5B-LR	3.5	-1.68	1.52	2.09	2.66	-1.03	2.59

CMIP5 experiments

Ramp experiment: 1%/year CO2 increase

