Data

5 types of 'OBS' \rightarrow 14 data sets

Models	"Validation" data sets
IPSL-CM5A	3 in situ
LMDZ5A → "AMIP"	3 satellite-based
IPSL-CM5AMR	3 hybrid
IPSL-CM4	3 reanalyses
IPSL-CM5B	2 ocean model forcing

8 variables:latent heat flux LHF, sensible heat flux SHF,
zonal wind stress τ_x, meridional wind stress τ_y,
near-surface wind speed wind10m,
surface temperature SST,
ocean-atmosphere temperature gradient SST-T2m,
near-surface air specific humidity Q2m

Period of reference: 1979-2005 Spatial coverage: oceans 30°S-30°N

Map and zonal means comparing the simulated climatological annual mean near-surface wind speeds with the observations.

Significant weak surface wind bias!

Map and zonal means comparing the simulated climatological annual mean sea-air temperature contrast with the observations.

Exaggerated sea-air temperature gradient

Maps of maximum absolute differences between the observational mean and: the individual observations (left); the individual AMIP simulations (right). The figure is based on climatological annual means.

Very large uncertainties in observational data; Simulated latent heat flux within observational range

Map of significant model bias. The figure is based on simulated and observational climatological annual means.

Very large uncertainties in observational data; Simulated heat flux mostly within observational range

2. CM5A vs. AMIP vs. OBS: What are the effects of oceanatmosphere coupling? What improves, what new biases appear, what stays the same?

Ocean-Atmosphere coupling => significant underestimate of the sea surface temperature in most tropical regions. **2. CM5A vs. AMIP vs. OBS:** What are the effects of oceanatmosphere coupling? What improves, what new biases appear, what stays the same?

Increase in wind speed, Change of structures in Pacific low latitudes

3. CM4 vs. CM5A vs. CM5A-MR vs. CM5B vs. OBS: How do different versions of the coupled model compare?

3. CM4 vs. CM5A vs. CM5A-MR vs. CM5B vs. OBS: How do different versions of the coupled model compare?

Relationship stable in all model versions, but...

3. CM4 vs. CM5A vs. CM5A-MR vs. CM5B vs. OBS: How do different versions of the coupled model compare?

...but not everywhere

'OBS': TSOL-Q2M Correlation

IPSL-CM5A-MR

10°S

20%

30°S

02

100°E

IPSL-CM5B

160°W

60°W

40°E

3. CM4 vs. CM5A vs. CM5A-MR vs. CM5B vs. OBS: How do different versions of the coupled model compare?

...and not the same in all model versions

IPSL-CM5A-MR

IPSL-CM5A

IPSL-CM4

AMIP

Conclusions

Large observational uncertainties, especially in the surface heat fluxes
need to be addressed by the observational community
When evaluating model results, we need to account for these uncertainties

□ Systematic model biases (cold sea surface, weak winds) do not transfer to the surface fluxes, because of compensation of effects

□ Different model physics => "different world" (even when removing the mean bias)

Analyses Atlas

20%

10

20

Turbulent fluxes

Sensible heat flux $\rho C_p C_H (U-U_s) (T_s-T_a)$

- SENS lower in CM5B than in CM5A, despite higher ΔT2m AND higher WIND10M!! ← any modifications in the bulk formula? YES: f_cdrag=0.7 instead of 0.8 in CM5A.
- Change in the relative importance of the heat fluxes: SENS lower, but FLAT higher than in CM5A!
- FLAT higher than in CM5A, because of higher SST and WIND10M but lower Q2M!