Usage des Sols dans CMIP6 Pré-travail IPSL + discussions CNRM

- Coordination: LUMIP (Lawrence et al. submitted)
- Releases already done of past land-uses and six future scenarios
- What informations will we get?
- Some basic rules for implementation in both climate models (IPSL, ARPEGE)
- LUMIP simulations (partly supported by CRESCENDO?)

Provision of Land Uses for CMIP6 from LUMIP – Land units in each grid cell

http://luh.umd.edu/data.shtml

Provision of Land Uses for CMIP6 from LUMIP – Land management per grid cell

http://luh.umd.edu/data.shtml

New Management Layers

<u>Agriculture</u>

Fraction of cropland irrigated

Fraction of cropland flooded

Fraction of cropland fertilized

Fertilizer application rates

Fraction of cropland tilled

Fraction of cropland for biofuels

Wood Harvest

Fraction used for industrial products

Fraction used for commercial biofuels

Fraction used for fuelwood

Land-Use Harmonization (LUH2)

New Resolution

0.25° grid-cell fraction

New History

Hyde 3.2, FAO based
Landsat F/NF constraint
Multiple crop types (5)
Multiple pasture types (2)
Updated Forest Cover/Biomass
Updated Wood harvest
Updated Shifting Cultivation
Extended time domain (850-2015)

New Management Layers

Agriculture

Fraction of cropland irrigated
Fraction of cropland flooded
Fraction of cropland fertilized (industrial)
Industrial Fertilizer application rates
Fraction of cropland for biofuels
Crop rotations

Wood Harvest

Fraction used for industrial products Fraction used for commercial biofuels Fraction used for fuelwood

New Future Scenarios

Six futures, SSP-based

Land units in each grid cell of the land model

Implementing Land Use Changes first basic rules to follow

 Anthropogenic area is imposed from the provided dataset [even at present-day ... i.e. even in the control simulation!]

In the past, different Implementation Strategies

where do/did croplands/pastures come from?

Implementing Land Use Changes, second basic rules to follow Make use of informations regarding transitions

From year i to year i+1

- ANTH = Anthropogenic Land Fraction
- do not change desert area if possible,

i.e. if
$$\Delta(ANTH) \leq Forest_{model,i} + Grass_{model,i}$$

- Δ Forest_{lumip} = Δ (primary + secondary)Forest
- $\Delta Grass_{lumip} = \Delta (primary + secondary) NonForest$
- Use $\Delta Grass_{lumip}$ and $\Delta Forest_{lumip}$ to constrain ther changes in forest and natural grass area in our model
- Keep our proportions of forest and grass types as in standard map

OBSERVED MAP (~2010)

Historical dataset

RCPs/SSPs

Natural LAND

DERIVE

Anthropogenic LAND

Expand/reduce Natural land

Crops/Pasture / Urban

Presentday natural land

LUMIP data set

Coupled simulations Proposed by LUMIP

Overall Approach:

Two phases: 1) idealized simulations, 2) realistic simulations

Phase 1 Idealized model experiments:

Improve process understanding/assessment of how models represent impact of changes in land state on climate;

Quantify model sensitivity to potential land cover and land management changes

Phase 2 Realistic model experiments:

Isolate the role of historical and future land cover/use change on climate relative to other forcings, assess potential for climate mitigation through land use

Lawrence et al., GMD, subm.

Phase 1: idealized simulations

Tier	Name	Description	Model setup	Years	Forcings
1	idealized_deforest	50+20 yrs deforestation	C-driven coupled	1851-1920 starting from PI	Keep as in PI Control except tree cover

Lawrence et al., GMD, subm.

1. Idealized global deforestation experiment

2. No LULCC experiments: Historic period 1850-2015 Coupled and land-only

- Assess impact of LULCC in historical period for water, carbon, energy fluxes and climate (C4MIP, LS3MIP)
- Assess land-only vs coupled response to historic LULCC (LS3MIP)
- Assess how land-atmosphere coupling strength modulates climate, weather, extremes response to LULCC (LS3MIP)
- Relevant for detection and attribution (DAMIP)

3. Land-cover vs land-management change experiments

Set of land-only historic simulations (variants of land-Hist) with one-at-a-time inclusion of particular aspects of land management

Probe impact of land use on fluxes of water, energy, and carbon

- **1** Year 1700 instead of 1850 start
- 2 No LULCC change
- 3 Net LUC transitions instead of gross
- 4 Crop and pasture as unmanaged grassland
- 5 Crops with crop model but no irrigation/fertilization
- 6 No irrigation
- 7 No fertilization
- (8) No wood harvest
- 9 No grazing on pastureland

- 10 No human fire ignition/suppression
- 11 Constant 1850 CO₂ (N dep?) (TRENDY)
- 12 Constant climate (TRENDY)

Phase 2: more realistic simulations

ScenarioMIP

SSP3-7 (conc. driven)

SSP1-2.6 (conc. driven)

SSP5-8.5 (emis. driven)

LUMIP

Afforestation w/ SSP1-2.6 land use

Deforestation w/ SSP3-7 land use

Afforestation and mitigation w/ SSP1-2.6 land use

assess the potential of landuse for climate mitigation, reduction of adverse effects

Lawrence et al., GMD, subm.

